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SIGNIFICANCE AND EXPLANATION

In Mechanics, Physics, Chemistry it occurs frequently one has to study

a boundary value problem in media with periodic structure. When the period of

the structure is small compared to the size of the domain in Which the system

is studied, a microscopic description of the, system is difficult, but one

might expect to get a good ,acroscopic description of the system by making the

period-parameter go to Zero in the equations which describe it. This type of

process is calledi "homogenization".

Wlen the equations have a variational formulation; for example, when the

solution u of the microscopic problem (with period e) minimizes a func-
£

tional F (which is in general related to the "energy" of the system) over
C

a space X (the boundary conditions are included in X), one looks for a

limit functional P such that u,, the limit of U , minimizes F0 over X.

We can say that t is the limit of the sequence F in the "variational
0

sense" . In recent years this type of convergence, called "F-convergence"

(notion introduced by E. be Giorgi) has been intensively studied.

Using recent results of compactness and convergence (in P-sense) for a

large class of functionals of calculus of variations we can attack many

different problems of homogenization with a unified point of view. For

example, one can explain the behaviour of u,, solution of the following

equation with "rapidly oscillating potentials" (studied by Benssoussan, Lions,

and Papanicolau) pus  A + . W(' Nu;; f on Q; u 0, as e goes

n
to zero. W is a periodic function (in each variable) from 3R to JR,

with zero mean value. Actually, one can prove that u converges and compute

the limit equation.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



AN ENERGETrC APPROACH TO HOMOGENIZATION PROBLEMS WITH

RAPIDLY OSCILLAAING POTENTrALS

edy Attouch+

Introduction. The model problem, studied by B.L.P. (2), of homogenization with rapidly

oscillating potentials, is the following:

Let W be an Y-periodic function (Y is a basic cell in In ) with zero mean

value, and u the solution (which exists for i large enough) of.

" w(4)u on D.

When c goes to zero, one can pr.ve that u converge weakly in HO ) 'to u solution

of.

(I) 1u - bu + M(WX)u - f on Pl: uI 0

'We denote by M(WX) the mean value of WX and X is defired by%

AX- W

X is Y-periodic

a) Since u~ converge in weak-H0 (IM) and WQ ovre(t 9o n ekl ~

It is rather surprising one can go to the limit on the product Moreover its

limit depends on the partial differential operator you ,work with in the equation (I ).

(Here w took the Laplacian). We shall first give a direct energetic solution to the

model problem, and emphasiie on the fact that the sequence I1 W x)u ) converqe to

M(WX)u in weak-HIV(0) and that one cannot expect a stronger convergence.

b) Then, we give an energetic interpretation of the previous problem showing tha

it is a particular case of the more general problem which consists in computing the
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limit (in variational sense) of sequences of functionals of the follwing types

where f is -peri6odic in x, and convex in (u.Du), .and satisifes boundedniss and

coerciveness assumptions.

This approach leaids us to study mre general problems than (I) and to-sbme ronjec-

tures concerning the convergence of such general sequences F CC

c) We obtain, through direct computational Method, the limit euatin when f

is quadratic in (u,bu)i so we treat in a unified way, homogenization problems with

first order terms (cf. [2]), with oscillating potentials, --- an example, 'let us

consider

where the coefficients alj are in Y-i(Rn), Y-periodic, and the associated second
order operators uniformly elliptic. Don't assume the a syetric. We observe that

(0 is taken large enough) the sequence (!,W(!)u converge to a first order term
C>0

ien,wak-H '(0) and prove that u€ converge weakly in H0(a) to u solution oil

+Ai- a - I + H (WX)u f on at ul 0

where A is the clasical -homo'enized operator of the family A - - (1) , 3

i
(cf. Theorem 1 for a ,complete statement and definitions of at X i X). When the

coefficients are symmetric, a a ., (1I) reduces to

bu + A(u) + m(WX)u = f on a, u an -0

d) we then stay natural extensions of the previous results for higher order

operators, studying with particular attention the limit in variational sense of the

functionals

(u) f x( , u,Du,D2u)ax



2when f ifs Y-perlodic in xk and quaaratir In (U,DU,D ul,, (cf. Theorems 3,, 4, 5),

This allows us to deseribe, for !-axpl, the Iiilit of u s iolution of

(IV) o, u r 1 2WU

and more iouerally of u solution of

(Vil) P A u - W AU dlvu, IW u~

as r goes tn zerol (we assume the W1 have xero mean value) (of. Theorem 6).

Then We study the general coipactneas and convergvnce problem (Theorem 7 and,

Theorem 8),

Plan.

1. Homoqenization with rapidly oqcillating putent ali for iecond order operators

I.I. Study of the model pohlen.

1,2, Energetic interpretatior.,

1.3. Homogenization results for quadrabici integral functionals in (u,Du).

1r.4. Homogeni:ation with lower order terms.

1.5. Study of the general problem, Conjecture.

It. Study of higher order problems

2.1 Study of the model ,problem,

2.2 Homogenization of variational problems for integral functionalo, quadratic

in (u.DuD 2u)-.

2.3 Energetic interpretation and general problem,
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I . Imoqeudutl~t L with rapidly, oscillating lvtontiils for second ord~? op. r

1 , Study of the Model puonm.

froxoition 1. let W be a Y-periodic function with Oero aiBan valti as 'Wcs to

sot*, the solution u (which exist, if taking 1 lare ,enouqhl of

Uk~ uc - 4 + t on il# u 11 in 10-

conerg Ir W0-H R)to u solution of

(I) u- au + (WX)u f on 0; uJ 0m

where X is defined by (1,1) 4X Nk W

Iis Y;-periodlc

Proof of Ppeition 1.

a) The existen e of olution of for U large enough, follows easily

from the coerciveness of the billneer form a (,#-) associated with (I )t (from now

on,- given, G a function on e, we hall write G (x) - . From (1-1) e got

(1.2) A(C X i ,follows that

IJ v 2~~udx ' (C f dc~ x 2 (Dx)

and

A 012 oull - 2IDXL JU1 2 lD'a2,. AhJlUJ

for u large enough and som p 0. From the uniform coerciveness of the (a

IC
the (u ) are bounded in HO(A),

C410 1
b) 'Lit ut  i ;, as t goes to %ero and let us identify u as the solution

of (1) The only kablem as to compute th4 limit in woak-H- (il) of the sequence

t- ( u ) a Given 0 0 Cl) (a C" function with compact atiport) let us look to

V u- W 4vXI frop (14

f A(Cx t)u Odx inteqraling by parts

1C e clc(Aue 2DD + u 0 6#ldx and using that u Catistied (ICI

'-4-

Ii!,



i "i

f I(Uu +~ Ir Ol W 0uD i dx; wihen~ 4 qoos to w

1!a tt lin C Wu,,dx R?(WX) I dx that 1,s o say

w - N(WX),u and u satisfies the limit equation (1)

Re mark 1. From (1.2) we gebt

Ce H,f W uvdx f (CX )u vdx f DX, )l u ,,4 D tldx*. ,, m).I- ,,~ ~~2 DA ,I,, . I ,,.x:u.E, II I+ , ,, IV I ,..,+

4an tat we cannot expect a better estimeate, than the If 0.) one, on th eun~

;i W u)z, if the (I W'u) ,re bounded in L , then iu &,u wouldb ,bunded

in H. the u ould be bounded ir., H2, hence co.act In I! ,,o sie W. goes

;in w - H, the product WeU, Would go to zero, which is not the case I f
toa•i W - H, t, aproduc

PNmark 2. A rather un uspected rokult is that, dispite the fact that the sequence

(I Nou is bounded oniO' In H, its limit Is still 4 zero order term; aotually

this is relevant to ,e particular form of the equation (T we shalI see next A more

general tituation where this is no more the case (of. Theorem 1).
Remark 34 The lith of -W U,# which is equal to (-T 7 Inxtlyt, depends on

+'the differential op ,tor which governs the equotion- since X is def ined b:,y AN -1,

4 instead of (I) we consider (for simplicity)

P u e - X _u c  + W u f ( X O

then, the limit equation will be,

uu - ) 4 M1(WX)u r

1.2. Energetic interpretation.

Let us interpret nowj the behaviour of u solution of

(I) -Au 41-W f on uit,

E



) slution ult of O:r l -ift ** th e function l P() - (f. 0) whre

V W "I v, -•1 ~l 4 LVIId

i ,

2CI C

In fatt, Iati inga x th solutio of '(1.1) A W which 43titi-oc wire

J Wly)d', O, We oy write P. in the filowlnq Wsy_

r ) J~ W ul itla1, + Loxc~u'4x and inteqtathig by parts

-J jm Dou I - OW) u' Doadx

with

ot~~t.%) 112W * i
2 2

Taking, u large or4ah An order f to IUe positive (for *)ample 0a 5
- Ox1'~ *

f will t A positive quaratic foxim in (1 #* ar honce cOnvexi moreover

v l ,,) 1 n x x e n, A ajail < flx,(,x) , AOl((.,) , it follows that the correspond-

4 wtitoa rM to strictly conve rciv on H (0) and tha the only solution

of the o 0respomnion lr equation (I Is the unique point us, where P assUm
I;

h) rrow H, &t;l~ch [Il l Pherem :l,) it follows th~t the faWI~l2 of ( Owx tune-

tionals VF is coepat with respect to ther (wm I~ And all r M ) contenclo -

(This result is an extension of th4 compactnest result of OCrbone and Sbordono 13) to

the c s ,Wher. the tu ionsils e nd on u and Ot wt ih is precisely our situation.)

Let us Cive the precise statement we ugo;

Theorm A W, 1111. Lot (Xt-) f A x V %-* f a soquenco of

functions "easuvabbi in t i ovek continuous in (Co) posit~vos, tf (x.OO) 0

lot us defin' for every ,bou ed opu et in X

-6-



-,F u ) = F f hX.u(X ldzx ift u t Lip

+ if u t L 1 (A )S Lap o (-R)

and let us i sswIe

Mfl a Sjj ~ ) and f continuous Increasing inIfl ~jz1: such that

Vh , r . 0 < fh(X.C.) a< ,C1 x) l l 1z ) •

Awi& n, the following conclusion holdsa

T0 There exist a, submequence (h(p)). 4  'such that Vn bounded open set in

Vu t, L po,(jn)

F(u, 0) - -I) , (L 1)) lim (v, ) - r()(( U) lim h (p)(v,R) exist.
P+4- P;4+0
V-*Q V"*U

8) There exats A function f measurable in x, convex continuous in (Cz)

nsuqhi that VQ bounded open set, Vu e Lip (OR I

F (u, l) f f(x,u(x),Dulx))dx

y) IAO( + I (.z) JO) for some p 1 then the conclusion

extends to the whole space WoeP. ,) and VY bounded open set, Vu S W'(W

r N,11) (w p ()) lim s )i vQ

V*OU

So we may consider the problem of homogenization ($1I as a particular case (more

precisely of quadratic type) of the general problem of computing the limit in variational

*ense of the following sequence of functionals

Yperiodic in x
(P) F (u) f f .uDu)dx where f is

0 convex in (C.:z)

and satisfies some boundedness and coerciveness assumptionst for simplicity let us assume

XoljzJP- , flx,.z..) :j A0( + JEJP + jrlp) w ith p .i

,What the preceding theorem tells us is that, if P converge, its limit FO is

still of the form P0(u) fo(,uDu)dx; this implies that the sequence (u

where u, minimizes converqe to u which minimizes P0*



TWo particulv cAeeeof Proble (P) have been intensely studiedt

1. f(,f,:) f(x,t) (f is indepehdent of x); from rcellint and 4Wr.cono I -

it follows that r converge to PO whore

ro(u) C(u)x and f0 () , f(t( dx
Y

21 f (4Ss f (x. a) -(f is Andependent of V) I t follows from Cart'onp and4

Mordone 131 that r converge to F where
£ 0

40 ( f I,(Du) dx and f 0(a) - im j" f-(xtDu + z)dx,l Y-eids

We te n6W going to study in the next paragraph the general situation corresponding

to the model poblei, that is to say the case where f is quadratic in (,z).. (Ne

say also notice that the case f(x, ,z) t fl(X, ) + t 2 (xs). is a straightforvard

extension of the previous ones.)

1.3. Mmomnisation results for qVadretic Integral functional* in (uDu).

The general form of a quadratic integral functional F will )>et

(u) *f-a 17 4 u~~i-

where the coefficients a, bV# c are Y-priodici let us assume that

and II )

with i lanrge etiough in order the F to be convex, positive, uniformly coercive

1

The tuler equation, VF (Ut) f( . (f MYH1 (.)) can be written-

or equivalently

(1.4) U 2C u4 L
E 7x'7 ti

-8-



More generally, let us consider

a 4 1 W U~~~ pu z X u f on '4; u, O

with a,, non-necessary symmetric, W Y-periodic with zero mean value; withouit los :,f

generality we may assume c -*P the following theorem gives us the answer to the

asymptotic comportment of uc as r -0 0:

Theorem 1. For ii large enough, the solution uE of

I c a x i j i -x CX ~ C C

C I i l

exists, and u converge (as c goes to zero) to u solution of:

(U) u + A4u) + M[~ a 4-M(W)u on (1; u

(1.5). A is the homogenized operator of the family (AC) ACu (a

- • M (aij - a and

i,j k k

X is defined by AX' -xi  ) 0 with A*= - (a

1Xi is Y-periodic (aij aj.)

(1.6). X is defined by A X WO and,

II
iX is Y-periodic

( 1 . 7 ) j a j k .x

When the AC are symmetric (a.. a..) or with constant coefficients the limit equa-

tion ,() reduces to

( h)bis Pu + A(u) + M(WX)u = f

Corollary 1. When r goes to zero the sequence of convex functionals (a.. aji)

F(u) f. I F U b -cu dx
C ia) b. ix. Dx ax-- . 2 



converge in r '(w - H ) sense (we assume the a uniformly elliptic and, c > p with

ji large enough) to F, Which is equal to

F6 t* q , u Mb ixu2d

aa

where are (efinedin 11.5) (with A- A) and X is defined by AX- a

X is Y-periodic

Proof of Theorem 1.

a) As in, the, model problem the exiitence of u., solution of (21) follows fromC
the coerciveiias of the bilinear form a (.,.) associated with (1I): From (1.6) one gets

b
(l.6)bia :(CXc) + V -1oN=

and

V 2x !I-[n h ~u2d

C-/ ax, d i
-' faxi

-2 U a k au ' K

2 sup Is1 • IDx •

- ij i IDI 1u12  I 'uI2
It follows that

a(u,u) U'ijuj + JDu,2 -cu 2  11 P01lul12
1

H0

for p large enough and some p0 > 0. FroA the uniformly coerciveness of the (a (.,,)1

it follows that the (u) are' bounded in H (). Let u€  1-u it is clear

that (A'u) and (4 W ) are bounded in H-(f6)1 we are going to compute

their limits in weak-H

b) First, look to the limit of (-Wu,) as c -goes to zero; fro (1.6)

Z Wcuc -A~ (c u c x ( ;

let us introduce

-10-



then

which Is oqual in distribution sense to

The first term of the Sevond mmber olsarly conver9 in woak-0-1 I

ax'i ci 0) 1 4-

The second one is bouniiod in L (fil), but we cannot c*mpute directly its lizito given

e Co(0) let us congi(er

Oki i /,x

Lc Ox5)%d and integrate by partj

W x ,x 1 aijc I &.

enow use that u€  is a sulutionof (l1l.)
ax iX.~1u+~%e Ox iC I c idx,

Going to the limit (as C ' 0)

0 j Wii

that is to say

.2

it ex -0. u +I a -

-Id c

me now m m us tha u mnn n is ann soutoo (1 )1



from (1.8), (1,9Y, (.10) we get

(t.10 1 Pu

c) In order to compute the limit equation and to avoid computing twit- the tmo

limits, from (1.8), we Write the equation (lIE) in the following formi

Ijut ax ~i j ax)ic } ikx,(a I uC rf + 4 x

-Let us define tha family of uniformly elliptic operators (14)>01

(1.12) I.V vy ij C fi Aa ix i

Our problem reduces computinh the limit 8 of the sequence (BC )o in variational
au

senie (that is to, say thi homognizd operator of the B) ) Sincfe i + E Q
-1 C

converg, in weak-L2 (hence in strong H ) to f - A(WX)u the limit equation will bet

(1.13) H(u) + N(WX)o - f

d) Lit us compute B1 given 9 in L2(11), let v c  be the solution of

C

11,4) a E- , I "1 (. v

Let us ihtroduce

and let ua, extract veakly converging subsequences C -C -V 0 V. The

limit equation will be

(115 Pv 1. + a v

The problem is to identify the ia just like in the construction of the homogenixed

,operator A of the family (A )o lot us introduce X solution of

(1.16) A(X - x) - 0 and w, x.i

lxi Y-periodic



-Given W f e let.16 us multiply (1.14) by' cw , and Integrate over lo1t
"0

Ei w x + x~ ki ax ij jx '
ilQ j k ak

KC C + b +c

Aoen the identity we cget-,cmn be written

(b17 Ke a (g - .ivC £w'e)

Let us voampute the limits-of ac , b. C~ # m ince

C~~ I e £( *0) 1

which Usplies

-DO x dx

b~B aei dx fa(,i d
k~~~i oX k

a iC

C Cx ki , ax k C ax kR C

ax C C

k (cwk) Ci a.

b may be written

"I.-
VI..I., X. - dx

ajid

axj faxj aK.

Lo~t us look finally to c

f Cwvd

* c ~f~tiv ~(-13)a



Ap2<

cc o f E€ a ol ?A d x - (i~ a Ve + d

Fronk ('1. 17), i18), (1.,19), (I.20) it follows

+ xi E tAO dx - f (g - uv) xiodx ,
j x

SOn the other hand, multiplying (1 .14) by Ilintegrating over 0, and going to the

-Ii iit as C 0 , we -got

(1,22) f~ c 2 NW~d Nx(afc v a ()ie~dk (9, 000kdx,

j a x ij 1 "ax '

From (1.21) and (1.2 ) we g t

sic hsi ru* for any 0 eI 0 (n) we got the following equality (in distribution ,.

- -  ax i +

12 j i + 3XJ1 v D

k ki -ik ;k 'jd f (g

12 1 2 v

(15) 1he limit ao + Is 0 0eget

(1.22) ~ ~ ~ k ax -( 1 DxK-~ ( I -(cidx-j ( -x Ividx
jd;k j i1 j 1

From.v ( and + m (1.i- a) weg

e) From (1t13) the limit equation is

(1om(.1+) th li+it u ti- is(u on ; u

-14-



Lt us look in-detail to the coeff-iitknts of the firat order termt by definition,

AX r  (akih) l1t us multiply by X and integrato by parts, we get,

it,' x x dx=S )

Y Yk

on -the other-hand-

i ,

Since

foidx f a1 k-YdxY , kxk

we see that all these quantities are equal when the coefficients are symmetric in that

case the limit equation reduces to

(W'bia u + A(u) + M (W<) u. w on 0 u6 W, 0

This is also the case if the coefficients are constant (W(n)  0).

Remark 4. We-may write the equation (11 ) in the following form

Ar U ' I
C C C

We know that Ac .4 A in variational sense (or in G-sense) which clearly implies thatt

w - 11I  s .I1

V(v ) e A1 vc  - v, I -.. g -> (u,g) t A ,

But we cannot use this argument in order to go to the limit since the sequence

(f 1 wuc, 1u) converge only in weak-H" I its limit being equal to

f u - M t((I ) ,,: - Xt(Wx)u,

,Actually, the limit equation is not

wi AM M (, i u+ M (WX)u I

So, the arguments developed in the proof of Theorem i, justify and extend to the non-

symmetric case the result of B (,. [2] (Theorem 12.6),

Another way of looking at and extending the previous results is to consider hem

as hoamogenization problems with lower order terms. That's what we are going to look at

in the next paragraph,

-1 5-



77

1.4. Homogenization with lowsr ogder terms.

we are going toprovi the following statemantt

Theorem 2. -et u be the solution (p is taken larga -enough, all the coefficients

are, Y-perlodic, the (a~i) are uniformly elliptic) of the following probleml
ij

(111). out a C f(Yiud)+I a Caf on q U9 1 cj a IIIC'Ii C I CaxILI

Whe& C goev to zero, u converge-weakly to u in H , where u is the solution of:
0

(111) Ju * Alu) + A Y YJ B ij 1 a, a8) I i

0

where we denote:

A is the classical hoaogenized operator of the (AC)"t> 0  (cf. 1.5)

the are defined in (1.5)

Sis defined by:

O xi

Y-periodi,
Proof of Thorem 2. From (1.12) (ili) can be written:

C

au.(1.28) B%+Es ... L- u if

Tho only problem is to compute the weak limit in L (a) (let us call it n) of the

sequence [8 1~1 i the limit equation will be

(1.29) B + n4 f

with 8 given by (1.26):

(26)u u + AM . VAj i-

From, (1.27) AL(C) (to let us multipiy (i27) by Ou€  and integrate by

parts-



%4 -0

U

oe N' 1 %sieF-ew

f a (BC) (Pu dx f .- - -

this implies

S1 ax I q l I i ici)

a u 7a. §- u x-d+ f aj E

C

(1.30) )O dx • -- a +b +

Clearly

(1.31) a- f B -1 -u d M (0 f u dx
E i iC x (c40

(1.32) cc f I j uo " dx -* 0 M ai f"u d'

Let us consider

be= f I- (c) [z a* VU)
Qj ax i ei 'ic i T

and integrate by parts

J f i es a dx

Using that u£ satisfies (III

bS fX (Y u) + B axi ai 7Tidx
C 1- ax.c + C Ci i I x

Clearly,
lim~ b.1i O a (Yi u )dx}

l = lim f I Y. u fs Idx

C' a I C( C ?lxi taxi] Ix

and

-17-



(1.33) b =€ I y-If -dk I

From (1.30), (1.31), (1,32). (1.33) we l

(1.34) f~i 0 uId + 141~ '.- f wa + )U

ax W;

rrom (1.26), (1.29) and (1.35) lO -limit .saiun ist

a) When ! -Y1  vith, Y, a k (0h1ch was denoted Q f cf, (1M). hR.I)

tt get

amd, i (1-27.,,w* can take X. It follows that

i + k + k Tx __

and

lax ax
M11 Y'iyk a*k k id

is equal to N(wX) sines,

(Mm) A' d Dx .

So, formula (TI1) riduces to (II) advwe refind Theorem 1.

b) When , a 0, -we obtain Theorem 13.1 of b.L.P. (2),

1.3. Study of the general problem; conjecture.

Let us consider the problem (P); how to coampte the limit in variational sense of

the sequence F where

'-Is-



P '(U) f f( 'u, DO dx

f, Y-Periodie, in , convex, ill (u, DO and X~~p< f(x.C,z) <A 0(1 + I Z 15 P),
%Q

p ' 1. Froa the general coipactness Theorem A, one can extract , subsequenct F and

find a rormal converse hitegr&nd q such that

'ia .9 A Vu # W'' IY U,$R) r (w ; 1imP C( )

k

Where o(UO) , 9xubu)dx (A is the family of 'bounded open sets in Rn),

The problem is to ident fy 9; in the thre cases we already saw (f xndepehdent

of C, f independent of z, f quadratic in (&,z,), the integrand 9 does not

depend on x. Actually, this is also ttue in the gentral case:

Proposition I, The 4ntegrand g is independent of ,

Proof of Proposition 1. Following the proof of I1l Theorem 2.1, there exist a convex,

integrand fO  such thatt

' Pn

and

Vu e W1'P(0) Fo(U.1) ' f f0 (x,u(x) - (Du(X),X) Du(x))dx

W;0

Ck k ' +

such that

+F')1)4 i (u koa) Ir~ ~ C ~F ) (u ff ( & u d

k k 1 'k C k# k

since f(,,.z) is Y-periodic

f( -, uc, '(x" nk~k). 'Du  (x n ck)dx
k- k

n

Let t I be fixed and take n suoh that n + + Therefore.

IXt nk I  Ck take =Y + x where c 0 and x are fixed, From

k-k -



Continuity a&%pttona on the functional* 7 (which follows fro the convxity and

ntorm boundedness s*umptions)

itg( ufk, r k Oyc (vk, 4' *01)

Vhee Vk  IS-equal to u (. -i' on A +' and is extended with uniformly

boundod derivatives to 0 + xo.

Sinc* V k converge to ( -(sx 0 )) 4 ., in 1.(YC * 0 + x )

4O(C ( +) ( t- io x%) < o inf IF k(Vk  c x1 I

U1 in fF Ck ,Y *

TherefOre.

VC > 0 f" (X.'  fo.)X!J o'(XC.2)x,
Y +X xx Y +x1

eking -C go to aoro, this implies

fo o(x~0 *,C-(Axo),,) < fo(XCa)

that is to may ,4

(11,36) V(NoXl)e fn O(k + Xl,(,R) 1 fo(XIC + (&', o), -.
01 Q0 0 -01

Writing xl (it 4 + 0) " X0 and applying once more (1,36), we get

(l,37) V(xo,) e x n f0 (a1 ,e + (,xo),s) f(x + XO)

r (1-6) and (1.37) it follows

(1.39) V(x0 ,x1 ) , 'V( e lk t , xO(+xlt',0 f 0 (xit + %'xO),Z)

and titing xI . 0

(1. 0 tO( s) f 0o(0, C + (a. X),2)

this implie
r(U.A) f N xu (x) ( (X) 140,, ,u (x)IdX- o (o, u (x) ,Du (x)) x i., a (N. , X)~ o ,

IMsWk 6. It should be interesting to get a general answer to the problext to know

if, under periodicity conditionwon x, and convexity on (t,&) of f. the secloence



f'(14 ii...)dx c ..verge nd whAt is ItW limit ea& to. Tt St ritAlaell !

tO conjecture such a result. 40 t coaansider now the problem of tho" dentifi'at n of f t

It the Intogrand f is independent of at

the r' limit of r in 04Ual. to (of. 051)

FO(u)'" f t(U)dX with fo (t) f(y. ody

It the intgrand, f is independent ,of

the r limitOit is equal, to (of. 131)

rF(u) - (f fDU)dx with t (x) ,in I I f(yba + -)dy
0 UT y TyT

where we denote Wt the spae of the Y-periodic functions In W l,

A natural conjecture concerning the case where f dapends on t and a would

be thAtO

o (u) f 0 O(Uov)dx with f 0 (R,Z) " lin 4- J f(Y¥tDu + 4)dyIuvw ,,,

This formula Is orrect, in the two preceding coses &no in fact that is the obe conjectured

by Lionoussan, ian and Papanicolau 12), Re ark 17.7,

We are going to prove that unfortunately it Is not correct in the general caseo in

order to give a counter exasple w shall use the explicit computation we sade of the

Um*Lt functional in the quadratic case: Let us consider

(u)W f(2 a - + b - U lo

41 I' 0C5Ii i II x2 f '

That Is to say

F~u W f f .D)d

with

f) f(y, kX) - * (Y~z S, + ( z +



>A W

ir

From Corollary 1, we know that

Flo -'HI) link F0

Is Wooal toaI

3u aXu

"hAt is to may

F 0 (u) f 0 f(u, DO dx

(1. 38) f0-,: qj z xj~ + -N(c +WX)(

04~ 2 kij 3Xj 1 2

(1139) 2. aa-a A(X) N(X,) i~ia

an~d

(1.40) W o ()+

X Y-periodic.

So, lot us comout*

I in f f(y,C,Du +z)dy

and compare to L ~ t be a minimizing point for 1; it satisfikki

(1.1)- ~ a1  iJ -~ (a1 z) b 0
i~~~i a',i xj, ij jki i J 3

equivalently

(1.41) his ANuC'z + (,)

From (1.40)

(14)AN' + (z,)) A(EX)

Frow (1.42), we cannot concl.ude directly, since u + (z.-) is not Y-periodic, so

we remark t~it

(1-39)AX i Ax. - A(( z,)) A Q zjx )

-22-



Therefore

A( £ zX) I A(CX)

and now, we can conclude since EX and u .,z + E zAXi are 'Y-periodic:

u , + z 4Xi - X (up to a constant)

which implies

(1.43) Du + z DX CDX

and

.(1.43)1bis Du ,z + z C DX - E z ')k + ,

It follows that;

k
3X ax itL J

+ b C -+ : + ccd

l~ ~ ' z(& k) x X

3xi ax.

Let us order the terms with respect to & p 0,1,2z

(CI + 8 + YE 21

with

aTz1 i akz L. -) a zidxi jkXT-a ij a.k j
0i~k~ ax ak, t jk i i jt

1 E D axk a ax . 4,aax z 1a -E- zd

JYJ y 2 'ax x ' a T- i j -x r j3xLija

i,j~k ij k j :

+ ~ f ~ tb I :b i 'k

Com.putation of C.

aA4.. iziz. + ax Xk 2  a~ LX kj i

2 a i k l Xi  x ij a k;

-23-



+ a a
2'kkax h 2 a ax' zj

ax1 kk k k j

From (1.39)

Ax k-, (ki)

which implies

(AX ,X JL -dx ' ax -dx:f I ki axak k axY k k Yk

on ,the other hand

ax a x} 
(Ax*X0 ) -Jj a t rTxdx.

It follows that
' ~ ~ Y [ Xii jzizj "

i kkj "1 J

COmp tation of y: From (1.40)

Db $-

ax 

d
amd

(AXX) -1 f b1 _!_ dx

on the other hand

(AX IX) I f a &Ad
y ax ax

Therefore

-21-f ' 'k -fj cx: AM (a +WX)
7 I i a22i 21YI

So, up to now the formula is correct.

Computation of , t

ax. a 2k + a. 2A z + b

ij x xk a...

i1j ax ax' 'i xjk [zji - xJ

-24-



Since

-~ i- la

(Ax k,X) -'X dx i

on the other hand

w xkx a a1  k ax dx

and 0B ieduce to

which is not in general oquai to xerol (In the 41 skample X - 0 and a

soB 0 and the fomhula workst)



11. Study-of higher order ,problems

We Are going to see in this paragraph, thatmany of the preceding results extend

to higher order problems..

2. 1. Study of the iodel problem.

Let us give an energetic proof -to the highly oscillating potential problem with

the biharnonic operator (cf. a.L.P, (2) for this study through multiscale method),

Proposition 2. Let u (for p large enough) the solution of

(IV)+ 'A 2Au + -Wu u f on Q), u e'(a

(W is a Y-periodic function with zero mean value.)

When c goes to zero, uC converge weakly in H 0 1) to the solution u of

(U 2u , + (WX)u-f on 0, ue H 2(Q)0

where X- it defined by

(2.4') A +W
IX it Y-periodic,

Proof of Proposition 2. As in the second order case, we remark that u satisfies the

ruler equation associated with the functional FC - (f,.) where

F() f (I. PU2+1AU2+ _, dx ueH n

Noticing that 42(C2X) +eW O, (from 2.1), we can rewrite FndC 2a) l C2)d

F (u)- 1 u + .1(&U - 2 (Ax) . (uAu + .~i)d

It follows thatfor U large enough F is a convex coercive functional on, H2(Q) and,

that u€ minimizes F 4. (f,.) over 82(A.
C 0

Moreover, the F being uniformly coercive on H2(0), the U ) remain
C w - H2  0 C c>O

bounded in H 0l); let uC .

In order to go to the limit on (IV) we have just to compute the weak-limit in

11"21) of the sequence 1 W u let us introduce e C.(0 and look to

C

1, f 1 cu. d f A(c2'udcc

-26-



intogr ting by parts

I o-.f (uV+ 2DubO uWbdx~

since u converge weakly to u in 1101 (and strongly in, H ) and (a) ri

(2.2) + ' (AX) 6uax - 4 0

makilng another integration, by parts and uslng that u satislies (IV ), -we get

RE
-J(AX) CAu E adx - - fc 2Xcr~ C 1,2 * Au C4 40 2tDD(Au C l dx

c {(
(2.3) - f (AX) Au vldx - - Cf X(W -u - + AUcA + 2ID(A))d ,

Let us consider the last term:

jC f O~X DWD(AU )d*k. Xf~ (Au )dit

Int4grating by parts

(2.4) J, 4 " i jc 2 + c rOx dx goes to zero as c 0

From (2.2), (2.3), (2.4) it follows that

1
It 7-+ N(WX) f u-odx which means that . W u - N(WX) U

i C

and we finally get the limit equation (IV).

2.2. Homogenlzation of variational problema for integral functionals, quadratic in

2

The general form-of the functionals we shall study in this paragraph ist

(2 (u) f a -u A2bu + J 2 au ! cj u

f2 L*ij 2 2 ax. 2

d j + iu

where all coefficiente are Y-periodic, the (a i) and (d ) uniformly coercive

d I Ct  PIC1 (d d

f270

-27-



rT

with, I and v large enough in order the F to be uniformly coor,,ive ovtr I()c0
- We shall not give a complete answer to the problem-which consists knowing If thp

sequence (r converge in variational Sense (in PC(w - u2) sense) and whnt is Its

limit equal to. W6 shallonly explain on simpler situations (Theorem 3, Theorem 4#

Theorem 5) how to deal with the higher order terms.

The Euler equation corresponding to the critical points of the functional F ist

2 2 2 _2

(2.6)_E 4,a
ax iC x ij ax2ii a ~ x j~ ax 2 iI i ;Xi

C, [2 ax a a) -x+

£ ~ ij i I ax i C ~u

Theorem 3. Let u be the solution-of

M Ou + 2a2 on
iax1  ax!

When c 0 0, q. converge weakly in H02(W) to u solution of

(V) uu + q qii 22 where q1j " Na 1  akj aX
1j x ax1 2kj

I i 1 2 o22and, X satisfies iAX j ADx with A - I a

X is Y-periodic 
a

Proof of Theorem 3. The (u are bounded, in HO( 2).I let Uw H0  U in

the second order problem, let us introduce

a2u

The (C) are bounded in L2 (SI)f we can extract subsequences such that &c W

The problem is to identify the Ci' Given P an homogenous polynomial of degree two

let us introduce X the solution of

(2.7) IAX- AP

IX is Y-periodic

and



(2.S)' W- P - x

22 2 W 2

(2,7)', ,2.9) limply that: A(Elwr ) 0 and r 6 P - X t, w L + P.

bet us multiply (V) by Ciwe where 4e C (Q) and integrate over 'b

(2.9) U, t Q 2 Wd w x + E 14 (r[wc)dx f 2w ,,dx

Lt us look to

-~ ~~ ~~~~d a; ; l (:w) + w + b +,
r2,

be 2 3 (cCw +2 2 - 3#v- dxsabx
L 1 i -( C 0 0 1 1 xl, axJ

tw -d , -4--(-)) 4of
I} C ax a x 2 x

I i

Lucn [o , Ah aii 2n (C2 we )v ,

C x1 I 3xC xT T C

j

-L( aL [C w ~jew)),0 + 2E 2- (CW,) wC
j Ni

Since A(Cw ) 0 the first term of the second member is equal to gero and a. roducos

to

)) [-2 Do -- TT -2

and

ar 
- > - '  [L2 . . . u2- - u .... Ix

(I AkjI 2- x



+~d + 2- fdx f E & .

(2.10) wx Wx. -x +J~~~ x
i 2 0 X

+ N akd 2 - 21) 7_ 'dx -(,P

j ~k x fx
Tk X j

On the other hand multiplying (V) by V P, integrating over a and going to the lint

we get:

2. 2
(2.12) P PMJaL-~ -jJf-dx

0 0 1  ax k 2 ax., ax ax i jx)

2221

(2.13) 1- aj 2  au2(
ax j ax

the limit equation i

2 2

Let us now describe how to deal with the terms of' the form bj2 Sx- x in F:

' Theorem 4. Given (bi)i 1 ,.,n ,'Y-periodic functions, let s-define

When C: goes to z ero, 1F: converge in F lw - HO) sense (v is taken large enough)

i to F0

n'2.) 3 2 
-

jj ak k X

where Xi  satisfies AXi + b. - M(bi) 0

C ax

i 4 Ges Y-perodic f

-30-

-30.-



Conaiderng thok Fulet equation that mAns, that for any t ! , -the solution u of

conVerge as c . 0 to the solution u of

420) 1 11au +~ M(Sx i'axi) "I f r,,n 411 u 0 * (

Proof of Theorem 4. It is clear that for u larqe enough the funttionals (11) re

co1*ett uniformly coercive on It,(11) 1 the (u )- s *0 olqtoll of the corresponding
W -

Ruler equations stay bounded in I ) I let u k and identfy u As the

solution of the 1-Imit equation (VI), The only problem is to compute the limit in weak

H"I of the sequene - (bI Au It given o t C'"(0) let us consider

and introduce )( solution of ({l15) M + b 4i (b4) 4

I Y-periodic,

Such X e)tia ts ekne M(b -,1(bi)) W e. can now write I in ,the following wiyt

{I i

1, ((b I (ru '~x Aot T x- ) d

I . M b A x- c )A dx.

Tha -first term of the second member clearly converges to A1  u dx. Letiaxi

ua consider

,1 A- 0 A(x)Au -dx

and integrate by parts

x r)OA u D(AW ID( + Au a

and using that u satisfies (VI),

-3--



After reduction

in ~-* , !o u

S4 C) j 2 1

+ 2i (AUi W + Au , Aith

When C goes to zero, all the ter* tyt one go to rero-

Ii ~ j~ li CY WAb~) j* j- (XA (biV I) dx
tea S" L a e t seaxuen e 3a i

t*O0

Finally#

( uC-0) n bQ i i J,
that Is to sayi

- x(b A w W- H~F - I M (bQ 4U~ 14 (X- (b 3~ U
a i i a x U aj

Since

AXb ~~A[I t4(bi) - (bQ4)A

the limit equation ist

2 ~ 2
(VI) A U - PiAU - I (X Abi) f--- on Q1* U C t (

0* remark that

14(kXiAb) J AX'~AX~dx

and that u minimizes PF 3 (f,-). with

P (U th ' IU2  ) M (AXiAxi) O. u

Let us now consider-the last type of higher order-terms that appears in (2,0).

Theorem S. Let us consider the sequence of functioals (PC -

2
F (U) (AU) 2 4,JU + a . )d

-32-



where the a, ae a Y-periodie and v is taken large enouqh in order for the (E

'to be uniformly coercive on Hn2(Q). When f goes to zero, F converge in r (w -

sense to - t

FU) f (6u) 2 + IOu1 2  1 M((AX)2)u 2 )dx
0

where 2

I "[ O~, x i,¥pt

3x1 2

Considering the tuler equation that means that u solution oft

2'2
(VWI) U + Pu + - (au) + a, - f

Cax. 2 1 v ax.2

converge in weak-H 2 to u solution of
0

(V11) 42U + viu M(O lA )u OAf

Proof of Theorem S. The proof is just slightly different from the one of the model

problem (,TV) The only problem is to compute the limit of the sequence

2

C ai  X2J Let us introduce X solution of

C>O
22a.

(2.16) A2 X+- 0

ax1
X is Y-periodic

From (2.16), (2.17)

32
A 2 (c2x9 + a

multiplying (2.17) by Ou ,P e 00 0()"

'2.

12.81 (C2 X )&(Ou )dx + a. _ ( x =0,

(2.19) (AX) (u + 2WDu )dx + f A(O1X )ipu dx

2 Du ^a 11'
i c-2x a c

2 - -dx 0

-33-



w,- L2

which implies, since (AX) - ,

(2.20) la A(C2X,,u +dx + j a u-L dx. 4 (aQ 2
C-0 12 1 1xxx+

i 2u ,dx

Lot us consider

J f A(c2X )Wu dx

integrate by parts, and ae that u E atiaflei (VII) E

aCu 3 ai C aO~ DD(u+vf-UC-22 1 -F32 (A)u d
ax i i ixi C)

When c goei to zero

(2.21) Xc0 j(2 fJ-udx

?r6m (2.20) ad (2.21) it -follows

2 2

(2.22) f'P I a 1 -2 dx -(C---~ 0) 0id -H x 14(a± I 2 odx) i 0 ) 1 Qx

which means:

22a u w 2  3 a

2 ,
i i xi  i-

The limit equation is:

A u+ M 1(aQ LLU + M Nxa a+ u W41 f#~

Ox!+

2

(VII)A 2U + I' 4( "iju f

From (2.16,1-

2

-1 (1 X --J K-.((Ax) )

-34..



Remark 7. from Theorem 5 one can relind easily the result of the model problem where

F~1) 1 2 1u (~~ t 2dx

It is clear that the contribution of the last term, in r_(w - H) convergence, is zeroi

so, we apply Theokem 5, with a1  A X and "et the result of Proposition,. remarking

that M(WX) j4-M(()2)

Lot us'give 'finally the following example which is relevant of t00 ,Aame type ot

teehnics: y

Theorem 6. Let (U E be the solutions of the followinq equations

+W + I W 'Aiv u + 4.u a f on 9, u 4

(t)C c C CA'.O c C 2l 2 C

(we take P large enough) where the Wi (I w ,.i,2) are Y-periodic functions with .i.o

mean value,

2When C 90o5 to i ro, u converge weakly in H;(O) to u solution of

2 r
(VIII) pu + A u + N(W2 (X2 - dlv XV4 AX0)1u f on, fl l s H9(fA)

2
where X is a solution of, (2.23) AX. + Wi  0

Ix eriodle .

Proof of Theorcma 6. Let us consider-

-r f wo, . Iz f W , 4k\. u ,,dx, I'. ,

where i t W (a) and compute tOeir respective !imLts when f, 0. 3uat like for the I
'modol problem, one cjn prove

(2.24) K ('O~MW2X2) .WdX i

let u, consider nw I

T. f '. ,-a,

-35-

• ,%.LL .- -.. / .. ..



~erf

2C f- AX A2

O'C u + 2D(AU)w + uWd

2WC div uuidx

*O C Vi r 2 2,Cur

C X o2D(uO )DO + Au Ao)dx
0 C C

When t goes to zero we see that

(2.25) I W W f dX
0 ~0

Let us now look to the last term I

1 C - ,,dlv uodx -)d3  A2(x1 )div uOdx
1 RCI ,

C f (A2 (X )di +4 A (div , )V)dx

it c f A(X )Ai u div#ax + C3 f A(div X )Ai(u .'dx - + HC

01 C (Ax' (~lcAu diW + 2u D(diW) + U div(Ao))dx 0,,o

HI -c /(d tv g )  A2uCO + AU W + UAcD A2 +ut 2Du D ) 5

O D(c )DO +2DuDW + 4 D T_ D dxlAO]

uting that ut satisfies (Vgt) i we getp that

(2.26) lim I l  H C , m f C2DdxW1 1 c-+ _L W2 c

rrow' (2.24), (2.25),and (2,26) it follows that

Wo.,Au. + I wl,,div u. + w2# .w2x iv xI + Axo)IIIo

and U satisfies (VIII).

2.3. Energetic Interpretation and compatness results for higher ordor functional$.

we are going to see that the stability results we got in the preceding paragraph

are relevant of general compactness theorems for the family of fun~ctionals

Ph(U) f fh 
(
k

U D u
A

D 2u )d x

-36-



Ir v
where fh ia Caratleodory convex continuous in (uu.,D u) and satisfies

X -ZI < h(xD-4y'z) JA UQ + 111 4-~ Qj~ j)

Theorem 7.. Lot

£~ -R~~~2n +
(Xh ,s) h,

be a sequence of convex Antegrands satisfyIng

x'" fh(X,,yz) is measurable

(C) I ( 0y, *t f(x,(.yz) is convex continuous

S.(, p + iylp +I12' i f £h(x#yz) ( 4U p10 + Iyd, + I')10 I (p b j)

With such an Antegrand' h we associate the functional Fh:

Vfl open bounded set in n, Yu e W ORQ) h

There exists a' subsequence (h(k),)k,3, and an integrand f, stil'l satisfyig '(C)

-such thatt

WO openbdupded set in itn Vu f W w2 ,p41) PNUA r'(W - W2 '~q)) lin Ph (U,4 )

wfere F(,) - f f(xuDuD u)dx is the functional associated with f.

The conclusion still holdswtth W2'p(n) instead of WP(P.).

Proof of Theorek 7. The-proof is very similar to the proof of Theorem A ((M3); so, we

shall, develop essentially the parts where the introduction of higher order terms bring

,some -oodifications.

Let B be a denumerabl% rich family of open regular sets in 1n (by requLr,
n.

Ve mean that the boundary is cf zero Lebesgue measure).

By the classical abstract compactness theoxem of Kuratowski, and using a di.0onaliza-

tion emma, we can extract A subsequence (h(k') such that;

(2.27)- YVa Bc Vu C -W2 ORfl r (w - W2 P()') 11 - (u,( M
n- bc h

exists From now'on we shall write P instead of Ph (2.27) moans that

-'37.- !



4 7~

A-

where

a) FFw -(uAZl)

F (u, (w W )lim KUTW

Since P' And F' are Afncrea~inq functlbns of Q, and, B, ts rich, we get:

vuet W i(TI open bounded set in I 4,!(u, S) Sup F'(u,w) Sup V"i~w
-,s wC01

,Step 2.

SI 4 (u#fl) is the restriction to open bounded sets of a reyular Borel measure.

Since H(u,1) is an incieasing, inn~er regulakr function of Q we hhve just, to prove
j ~

that it is additive and stibadditive.

Clearly l Ii F' (4,$) is superadditivel the conclusion will follow trom.

VI -F" (u, 0) is subadditive on

Noticing that c"(fl

Q Bn nu U olP(n U <(a ,) 1

and meas (fl U il )(SI U (Q \) is equal to zero, we reduce proving that: VwI S1
1 2 1 1' 2'

open bounded sets such that

1 U~w meas (f(w w1 U w 2 )) 0

we havet

u W2 ,p(~~ n "uf) "
Vuf ic (R F~,1 "uhwl1) F" (u'w2)

Let us introduce

AfA (w U w1 2

(by lhyp~thesiz- meas( ,) ) 0)' and

I (A) tx E- e /dist(x,A) < r)xr

By Urisohn's-enia, there exist o~ regular (here we need o e C2) such that:

0i on, 1(6) -and v =0 outside of I 2r(A).tmm p 'Lpc-iz oneca, et omeC by regularization by convoluation, noticing
that t3he thcns fI\ sstityp!iie
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Since Ui Cnverg* weekly to u,.& ik1 wIj , t-cohVetqis stmiqy in Ww 1

which, IujIee

k406

Therefore,

lim $uap F.(vi)< + 4, tv ~

and

F" (tuf) :L iUY-sup F (tv eff) < P1t,* + rl%~

+- +0 ,JI +i + 4 DAIt *- I1"dJ 4- (I t)AO f I

Making r~ go tdo srt~o t goto one) and uLaig the lover somico inuity ofm PI~ta

(u,,I k U!) r(

We have juast to pirovii that

the rig~ht ineqIalty is avidehftj the loft one Is a sti-ight-forvard coteequehtce of~ the

Stip 2.

Given t > Oj let vCv V regular' such that betas~w C) 1< c) by t'he prrdiq

i"ru0)<F(uv 4 Iu,m\w

H l(u ,f0) + AO, + IP 1011 +oI -tb Ib,')dA

Makin C g to orbiwe gt F"IO) -40-)



Stop 4.

Let us prove that there ekists f f (C) such that

Yu e W 2cpf n ) VO bounded open set: in ,n , F(U~t) f Ux'u(x) 1D(x),EA2 (X)kd~
)oc

Prom (C) o u e W (16 Vfl bounded open set in PR,

0 < FuU, AO f I (1 + Jul" + IDUtP + ID2ulp)d ,

It follows that--the measure fl - F(u,sl) is absolutely continuous with respect to the

measure of density (I + Jul" + IDuI p + ID2 uIP)dx. By Radon-Nikodym theoreml for any

2, p W'Ip) there exists a locally integrable function f such that%
boc U

VD open bounded set ih ]n, Fu, ffu(x)dx

Given xO  in e1n
,  let us consider the function

X + (x1  ) I (X i z (X - x0 flx - x
Xxoiy~z X Y + i 1 0 +

There exists a function f such that

VY open hounded set in n F(X ,), f (x)dx

Let us prove that

Vu C W2'(1.n)1 Yn open bounded set, F(uQ) f f f(x)
10 cx.u(x)DU(X),D U(X)

that is to sayI hti osy f( X) a 2 (x) =f(x~u(x),DU(x),O u(xJ)

U x,u(x),Du(x)D 2 u(x)

Clearly, by a continuity argument, we can reduco taking u C2(en).

Let us take x0  a Lebesgue point of fu and let us design by B(x 0 1o) the open

ball in Rn of center x and radius P ' 0. From (C)

VV f W 2.p(V n) VO *- 00 0 PF(v,u(xokp)) < Ao(l - lv IK! I

Since v 1 F(v, ) is convex it follows classically that there exist a constant C - P

such that

-41-



Ve~v-t W2'(-J1') VP 1% P I(ui1B(Xo*1N) P~'1 I10

toex

Vu 4W e 'oiB~'BXoV

Let us apply this inequality with u ahd v w X2

~~ I 1n~x01p) E0 4X)DU(X ),D u(x

22

W (8 (go~ux) # U1 (a(g)

We vide th inoasical byIr(oofP wIh cn:t make pn 0 go to eo.S nctUi# in~41z

P40 INpif th 10 otations.~ou~ )D~

Leto is ao @ethe poont of f h#aw foinqiaytain oeafrthfucon

U 0 o U O) IDU x~iID2U

ste-42.
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7T,

where f is priodi in x convex, vontinuouu, coercive with resoect to D2 U4 Since

the argument is lose to the one developed in (3) we shall just sketch the -proof and.

develop the modifications that the introduction of higher order terms bringst.

Theorem R. Let

F (u) f OE Ok(x))ax

where f is Y-periodic in x, convex continuous in z )k and Satiefiest

ZI IaI f(xz) 1 (3U + 121p) (p )

When c goes to zero F c onverges In " (w - 0 (M)) sense to PO00

0 (u) f f 0-( a x))dx

with

f0 - Hil f [ f(x.D2 u(x) z)dx

u Y-periodic

Proof of Theorem B. Se i-

From the compactnesa Theorem 7, we can extract; a subsoequence (ck ) and findke'N

an 1titegrand fO such that for every l open boutndd set il l n  and u inWo(10) ,

r-(W - W 2 O)) im V (u) - F

with

F0(u, Mi f 0 (x,D u(X))dx

(it Is c ear that f does not depend on u and Dus since

0 ,. f (x,,ytt) j A0 1 i I4I)'s and (t,,y) ' C, is Covex),

The convergence result will follow from the identification of f0 .

r' is independent of x.

The idea is the same as the one developed in Proposition 1; lot ms see how to extend

it simply to the wost general cast where

-43-



P () 1 If , fuiDut.

(for OiupllcitY of notations let us, take, v2)

Proit the proof of Theorem. T

r) -X f f(X10tE*Y#;)dx

Where

and

F( *M -, f (x~u*Du.D2 u)dk with f (x,tC,.a) .-~ ,,Y%

Let x0  1 x efndi ~~ and such that n x < (jl1) e Let

u W Wp~a)i'X and'

r 0 ( X X 1 i Y 9 * A ) l i i i r ( u C o ) w i t h Q w Y C 4 . x 2
k+ Ek 'k

F(Ua 0R f U,- (x DU N C b2u N ( n
% k ri~ ~~h~C nk k - C kk ki k k k

Let uas exitend u ~ -~- to al + and vk be the extension such that A

ki k Ckk 0

Sifio* vk cdnverge. to X 0- ) in v - +"( 4-) X~ 0

rO~~x -x 0),Y 9+ x0 + 9 2) liflh infF PC(v ko y t + x ~0 )0 Ck++'* k

k4 'k Ck

so,

ly fC, xCy)dx 1~ f9j f ( (xi&,yz)dx
Y +x+t r X2 -1

Nakinig cgo to kero, we get

-44-



f o~x(XA + X2 Dy.z) :"fx (x2 ,Y~ x)

which implies t
f(x0 + Xx 0 + x2.fyoz) *( ,x ,yz)

i.e, X f(x,x,E,y,z) f (x,&Oy,z) iS constant,

ftep 3.

fo(z) rlim Min f( ,-DAu Z~dxc- ' ut Wy JYJT

(W is the spate of Y-periodic functions.)

Clearly since f is convex

f 0 (Z) Min I f E0 (xD
2u + z)dx

Ain 1 jo(xjDu)dx in M P 0(uY)
uex Y k

where K is the closed convex set

K, (u z /u e i .
2 jy 24ij Y

Since

(U,0) r' (w - w"Po)) (u,Q)

it follows that

(F0 + a )(u,Y) r'(w W 2  (Y))(% - (u. Y)

and since the functiohals are uniformly coercive on- W 'P(Y)

0 W li i f U-, D u + zJ~1Ktk ,O ueWy Y k

Step 4.

Jim Min f f(4, D2u 1- z'dx Mill f f (xD2u + .)ax
cO uWY u T Y

This follcws from the equality:

,Mill _ j f f (hx D2 , f VMm PT 1 
L

te. W Y . teW V



4

Let us call

Xh,-mi f f (hx, D2 11(x) + z)dax

and let u be a iinizing point;, lot us-prove first that,

a) "tI LMh.

Let us define

;(X) 2 I(x
h

and let uu extend It to Y by periodicity.

j* f (hx, + z) dx rf f(hx D~(x
lyy ty Y

1, 1 - fef(xD 2 u X + Z)dx

and since u is Y-periodic

ff(X ,Du u(x) + z)dx M*

Since ai is Y-periodic N

b) M

Let uh bea solution of N n

h-1
vh(x) I uh(X I+ #..x + '

clearly v s Yproiso u(x) a h v (N Is Y-periodic.
h s h h-eod h

[,-j f(xD'a(x) +z)dx f f(xD v(N) + z)dx

- h' f f(hx.ID2vh(x) + zd

I'

and since Vh is -Y-periodich h

-4 ff (hxD vh(x) + z)dx

by convexity

h I I- n 1.

-46-



2- f f~h ft D Uh( + z) dx
h 4W. i 0 I

-i-I n (hx,

f( xDu(i) z) )dx -

Therefore U, Uh' and the conclusion follow4s. I

A
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